BigDog, the Rough-Terrain Quadruped Robot
نویسندگان
چکیده
Less than half the Earth's landmass is accessible to existing wheeled and tracked vehicles. But people and animals using their legs can go almost anywhere. Our mission at Boston Dynamics is to develop a new breed of rough-terrain robots that capture the mobility, autonomy and speed of living creatures. Such robots will travel in outdoor terrain that is too steep, rutted, rocky, wet, muddy, and snowy for conventional vehicles. They will travel in cities and in our homes, doing chores and providing care, where steps, stairways and household clutter limit the utility of wheeled vehicles. Robots meeting these goals will have terrain sensors, sophisticated computing and power systems, advanced actuators and dynamic controls. We will give a status report on BigDog, an example of such rough-terrain robots.
منابع مشابه
Dynamic Gaits and Control in Flexible Body Quadruped Robot
Legged robots are highly attractive for military purposes such as carrying heavy loads on uneven terrain for long durations because of the higher mobility they give on rough terrain compared to wheeled vehicles/robots. Existing state-of-the-art quadruped robots developed by Boston Dynamics such as LittleDog and BigDog do not have flexible bodies. It can be easily seen that the agility of quadru...
متن کاملA Composite COG Trajectory Planning Method for the Quadruped Robot Walking on Rough Terrain
The COG trajectory planning method is the primary concern in the gait planning for quadruped robot, especially when the quadruped robot travelling on rough terrain. In this paper, we focus on the scenario where the quadruped robot walking on the rough terrain with the static walking gait. We present a smooth COG trajectory generator that the COG smooth trajectory characterized by continuous vel...
متن کاملLearning, planning, and control for quadruped locomotion over challenging terrain
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstra...
متن کاملTowards Dynamic Step Climbing For A Quadruped Robot with Compliant Legs
Animals are capable of breathtaking dynamic rough terrain mobility – far superior to that of any existing wheeled, tracked or legged robot. Our research aims to endow our legged robots with increasingly capable dynamic abilities. In this paper, we are presenting a controller that expands the rough terrain abilities of our four-legged robot, Scout II, to dynamic step climbing. Dynamic step climb...
متن کاملDynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains
Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...
متن کامل